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ABSTRACT

This paper addresses the accuracy of using a
one-dimensional analysis to predict frequencies of
elastically-coupled highly-twisted rotor blades. Degrees
of freedom associated with shear deformation are stat-
ically condensed from the formulation, so the analy-
sis uses only those degrees of freedom associated with
classical beam theory. The effects of cross section de-
formation (warping) are considered, and are shown to
become significant for some types of elastic coupling.
Improved results are demonstrated for highly-coupled
blade structures through account of warping in a lo-
cal cross section analysis, without explicit inclusion of
these effects in the beam analysis. A convergence study
is also provided which investigates the potential for im-
proving efficiency of elastically-coupled beam analysis
through implementation of a p-version beam finite ele-
ment.

INTRODUCTION

There is a potential for improving the performance,
aeroelastic stability, and vibration characteristics of ro-
torcraft through the use of elastically-coupled compos-
ite rotor blades. A complete analysis of such systems re-
quires use of comprehensive aeroelastic codes that, due
to their complexity and size, are in practice limited to
modeling the elastic rotor blade with a one-dimensional
theory. One primary function of any aeroelastic code
is to perform an accurate dynamic analysis of the ro-
tating blade in a vacuum. The accuracy of this part
of the analysis may be questionable with the presence
of elastic couplings because nonclassical beam effects,
which are generally ignored, may become important for
these structures.

Many past studies have investigated the capabili-
ties of one-dimensional analysis in predicting behav-
ior of elastically-coupled composite beams. Smith and
Chopra (1991), Rehfield (1990), and Nixon (1989)
showed the importance of nonclassical effects such as
transverse shear deformation and warping in the static
behavior of these structures. The influences of shear
deformation and warping in nonrotating dynamic anal-
ysis of coupled beams have been investigated by Kos-
matka (1988) and Kosmatka and Ie (1991). These stud-
ies demonstrated the importance of out-of-plane shear-

dependent warping and in-plane warping (anticlastic
deformations) in the free-vibration analysis of beams
in which shear deformation has significant effects, such
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as the bending frequencies of short beams and higher
modes of long beams. Shear deformation also is an
important consideration for beams with some types
of elastic couplings, such as bending-shear elastic cou-
pling. Based on the work of Kosmatka and le (1991),
it appears necessary to include the shear-related warp-
ing effects for an accurate prediction of frequencies of
bending-shear coupled beams.

The effects of shear deformation on rotating beam

dynamics were examined by Smith and Chopra (1992)
in a study which extended the rotor analysis known
as UMARC (University of Maryland Advanced Rotor
Code, Hong and Chopra 1985a,1985b) to include ex-
plicit shear degrees of freedom. Results of this study
showed improvements in the prediction of lower mode
frequencies for bending-shear coupled beams. It is clear
from this study that shear deformation effects must be
included in the beam analysis to obtain accurate fre-
quencies of bending-shear coupled beams, but the ap-
proach of using explicit shear degrees of freedom in-
creased the size and complexity of the formulation.
This is undesirable in a comprehensive code because
the additional degrees of freedom must be addressed in
the aerodynamic models as well.

The formulation for rotating beams is more involved
than that for nonrotating beams because the rotation
effects can only be included through use of the geo-
metrically nonlinear theory of elasticity. For a general
anisotropic beam, accounting for all the possible non-
classical beam effects in a nonlinear formulation is un-
desirable because of size and complexity considerations.

One possible approach for simplifying the formulation
is to split the equations associated with the geomet-
rically nonlinear three-dimensional theory of elasticity
into a nonlinear one-dimensional set of equations and a
linear two-dimensional set of equations. This approach
has theoretically been shown appropriate for twisted
nonhomogeneous anisotropic blades through use of a
variational-asymptotical method by Hodges and Atii-
gan (1991). An explicit formulation of this approach
is proposed which considers the influence of nonclassi-
cal effects only on the effective beam stiffness proper-
ties and eliminates degrees of freedom associated with
shear deformation through static condensation. This
formulation leads to a rotating beam analysis based on
only those degrees of freedom which have been used
for classical beam analyses. A second analysis, which
should consider all the possible nonclassical influences,
but may be based on linear theory, is used to determine
the effective beam properties for the first analysis. If
such an approach is accurate for geometries and materi-
als typical of rotor blades, then rotor analyses based on
isotropic materials and classical beam theory may be
modified to incorporate composite materials and non-



classicaleffects, the work variation gV" is zero in the present formula-
This paper will address the accuracy of using one- tion (no external loading is considered, the system is

dimensional analysis for the prediction of rotating beam conservative).
frequencies of elastically-coupled, highly twisted rotor
blades. There are three objectives for this study: 1)
show that the degrees of freedom associated with shear
deformation may be statically condensed from the anal-
ysis, 2) show that the nonclassical influences associated
with cross section warping, which may become signif-
icant as a result of elastic coupling, can be accounted
for without the incorporation of these effects explicitly
in _the rotating beam analysis, and 3) determine the po-
tential improvement in efficiency by using higher-order
displacement approximations in a finite element imple-
mentation.

A rotating beam analysis was developed based on
a formulation of nonlinear equations of motion and a
finite element implementation. The formulation is de-
rived in Appendix A to show how shear deformation
and warping enter the theory. The formulation is non-
linear as is required to capture the centrifugal stiffen-
ing effects even in the linearised form of the equations.
The degrees of freedom associated with shear defor-
mation were eliminated through static condensation of
the linear force-displacement relationships. The linear
part of the formulation was implemented as a p-version
beam finite element such that the degree of polynomial
approximation for the bending, torsion, and axial dis-
placements may be independently selected. This imple-
mentation is described in Appendix B along with the
results of a convergence study. This convergence study
shows the efficiency of certain displacement approxima-
tions for a bending-twist-coupled beam.

Results of the present rotating beam analysis
are compared with those produced by Smith and
Chopra (1992) for a set of elastically-coupled rotor
blades to show that static condensation of the shear de-
grees of freedom is valid for the modes considered. At-

tention is then focused on nonclassical effects (shear de-
formation and warping) and their influence on the pre-
diction of.both rotating and nonrotating frequencies for
elastically-coupled and highly twisted beams. Compar-
Isons are made with experimental results obtained by
Chandra (1988), 1-D analytical results obtained with
UMARC as presented by Smith and Chopra (1992),
and 3-D analytical results obtained using the analysis
of Hinnant (1992).

FORMULATION

For this formulation, the blade is assumed to
be a long and slender beam, and constructed from
anisotropic materials such that displacement modes
may be elastically coupled. The blade may deform in
extension ue, lag bending v, flap bending w, and tor-
sion _, and both built-in pretwist and elastic twist de-
formation may be large. The equations of motion are
formulated based on the form of Hamilton's variational
principal typically used in rotor analysis,

6II = (6U - 5T - 5W) dt -- 0 (1)
1

The potential energy variation _U is developed entirely
by the elastic strain of deformation, the kinetic energy
variation _T is developed from blade velocity terms, and

Strain Energy Formulation

The elastic strain energy is derived in Appendix A.
Only the linear contribution to the strain energy varia-
tional is of interest in the present study, which is given
by

g-)'u, = ikq_j dz (2)

where (i, j = 1,9), and

&_i={ &_ &-' &v: _ _' &v' &J' &' &" } (3)

and kij is a 9x9 cross section stiffness matrix. The

fourth, sixth, and eighth rows and columns of kij are
zeros because the strain energy terms associated with
_, 6w', and &' are nonlinear. The linear stiffness ma-

trix kij can thus be reduced to a 6x6 coupled stiffness
matrix with diagonal stiffnesses corresponding to an ax-
ial stiffness, two shear stiffnesses, a torsional stiffness,
and two bending stiffnesses. For a static problem, the
force-displacement relationship is given by:

- [k,il (4)

Mz V e'

where Q are forces in the directions indicated by su_
scripts and M are moments about directions indicated

by subscripts. This relationship may be simplified for
beam behavior by eliminating the shear-related degrees
of freedom from the relationship. As was shown by
Hodges et ai. (1987) it is proper to assume the shear
forces associated with the shear deformation are zero,
but not the shear strains because of the presence of
coupling terms. With Qy and Q, set to zero, the
shear deformations may be removed through static con-
densation. This amounts to eliminating the rows and
columns associated with shear from the compliance ma-
trix rather than from the stiffness matrix. The compli-
ance matrix is formulated by inverting the 6x6 cross
section stiffness matrix,

= I

and after elimination of the second and third rows and
columns may be written as

(5)
U)" --

_H Mz ¥

The bending-related compliance terms include the flex-
ibility associated with any shear coupling present in
the cross section. The 4x4 compliance matrix is then
inverted to obtain the desired 4x4 form of the fully cou-
pled cross section stiffness matrix k_j, which implicitly
includes shear deformation effects. The term k_j is thus



replaced by k_j in Eqn. 2, and the vector of continuous
displacements is reduced to

_--( _'_ _' _' &,' } i6)

This stiffnessmatrix isapplicabletothe dynamic prob-
lem assuming the dynamic effectsassociatedwith shear
deformationare small.

KineticEnergy Formulation

For completeness,the kineticenergy isalsoderived
in Appendix A. As was the case for the strainenergy,
only the linearcontributionto the kineticenergy vari-
ationalisofinterestin the presentstudy,and isgiven

by

ff :6Tu. = _ai{m_u_ + c_iu_ + t_i_i} dz (7)

with the vector of displacement variations for the ki-
netic energy formulation given by,

_={ &, & &' _ _' _¢ } (8)

mij isthe mass matrix which includesrotationaliner-
tias,c0 isthe lineardamping matrix which iszero in

the absence of precone (#3/,),and kdjcontainsthe cen-
trifugalstiffeningterms which are ofnonlinearorigin.

Implementation

The linearparts of the strainand kineticenergies
defined in E qns. 2 and 7 were used to develop a p-
versionbeam finiteelement so that the degreeofpoly-
nomial approximation forthe bending,torsion,and ax-
ialdisplacementsmay be independentlyselected.Inte-

grationsover the element length were performed sym-
bolicallyto increase computational efficiencyof the
analysis.Furtherdescriptionofthe beam element for-
mu|ation isprovided inAppendix B. The finalform of
the rotatingbladeequationsafterapplicationofIIamil-
ton'sprincipleindiscretizedform isgivenby

M_j#j + Cij(lj + Koqj = 0 (9)

where Mij, Cij, and Kij are the element mass, damp-
ing,and stiffnessmatrices,respectively,qj represents
the vectorof discretedisplacements.The elements are
assembled to form a globalsystem which issolvedus-
ingstandard eigenvaluetechniquestoobtainmodes and
frequencies.

APPLICATION

The capabilitiesand limitationsofthe presentanal-
ysiswith respectto mode and frequency predictionsof

highly-twistedelastically-coupledbeams are examined.
The presentanalysis,referredtoasCORBA (COmpos-
iteRotating Beam Analysis)forclarity,isfirstverified

for simple cases where the elasticcoupling influences
are small.The predictionsof CORBA are then exam-
ined forcaseswhere the dasticcouplingeffectsbecome

significant.Convergence of the CORBA resultswas
achievedusingfivebeam elements with cubicpolynomi-
alsforthe bending displacements,and quadraticpoly-
nomials forthe axialand torsiondisplacements.These

approximations gave convergence in the most highly
twistedrotatingbeams considered in thisstudy, and
were more than adequate forthe untwistedcases.

Table 1: Composite blade stiffnesses for Series I.

Stiffness Baseline 8ym. Anti-Sym.

EA/moffJR " 378.1 378.1 378.1
GAy/mofl2R 2 50.77 50.43 50.77
GA:/mof_2R 2 25.85 25.85 25.85
GJ/mof_R 4 .003822 .003815 .003796

EIu/mofl_R 4 .008345 .008345 .008345
EI_/mofl_R 4 .023198 .023198 .023198
kl2/m0ffR 2 0 -33.67 0
k13/moft_R 2 0 - : 0 0
kl4/m0ffR 3 0 0 .3589
k_s/mof_R a 0 0 -.1794
kss/m0ffR a 0 0 .1796

k4s/m0ffR 4 0 -.001311 0
k46/m0_2R 4 0 0 0

Table 2: Frequencies for the Series I baseline.

COKBA UMARC Diff. Pred.

  orrev/0.749 0.747 1st lag
1.147 1.146 0.09 1st flap
3.398 3.389 0.26 2nd flap
4.338 4.315 0.53 2nd lag
4.590 4.590 0,01 1st tor.
71459 _ 7.416 0.58 3rd flap
13.61 13.60 0.08 2nd tor.

Table 3: Frequencies for the Series I symmetric case.

CORBA UMARC Diff. Pred.

(per rev) (per rev) % Mode
0.749 0.747 0.23 1st lag
1.143 1.142 0.11 1st flap
3.354 3.346 0.25 2nd flap
4.338 4.314 0.55 2nd lag
4.590 4.590 0.01 1st tor.
13.63 13.62 0.08 2nd tor.

Table 4: Frequencies for the Series I anti-symmetric
case.

CORBA UMARC Diff. Pred.

_(petter)(perrev)0%8.0Mode0.736 0.735 Istlag
1.142 1.141 0.07 1stflap
3.344 3.389 1.35 2nd flap
4.256 4.244 0.29 2nd lag
4.367 4.367 0.01 1st tor.

Analysis Verification

Several cases were studied to verify CORBA predic-
tions of modes and frequencies for rotating composite
blades. Three of the case studies are presented in this
paper. These three configurations, referred to as Se-
ries 1, were developed by Smith and Chopra (1992) to
investigate the effects of elastically coupled rotor blades

3



Table5: RotatingfrequenciesoftheSeries _ anti-symmetric case at ft = 1002 RPM.

CORBA UMARC UMARC* Experiment CORBA? UMARC't Pred.

(Hz) (.z) (Hz) _H:_ Di8ff.71%) Diff9I% ) Mode36.53 36.49 43.52 . . Istflap
53.89 53.73 62.57 46.6 15.65 34.3 Istlag
202.8 202.2 247.8 184.0 10.2 34.7 2nd flap
336.4 328.2 383.6 2nd lag
493.6 493.7 493.7 Isttot.

l'Correlationwith experimentalresults." IJMA'RC without shear deformation.

fora soft-inplanehingelessrotorhelicopter.The blade
crosssectionwas designedtobe representativeofan ac-
tualrotorsystem with respectto stiffnessand inertial
properties.The main structuralmember of the rotor
blade was a singlecellcomposite box beam. The ply
orientationof the box beam laminates was adjusted
to produce the three configurationsconsidered here.

The firstcase isuncoupled (baseline),the second is
extension-flapshear,flapbending-twistcoupled (sym-

metriccase),and the thirdisbending-shear,extension-
twistcoupled (anti-symmetriccase).The terms "sym-
metric" and "anti-symmetric"referto the orientation

of laminates with respectto the bending axes of the
box beam, but not to the laminates themselves.The
individuallaminatesthemselvesare arranged ina sym-
metric configurationfor allcases. The stiffnessprop-
ertiesassociatedwith each case,as reported by Smith
and Chopra (1992),are shown inTable I. In thista-
ble,EA is the axial stiffness, GAy and GA, are the
lag and flap shear stiffnesses, GJ is the torsional stiff-
ness, and EI_ and EI, are the flap and lag bend-
ing stiffnesses, kl_ represents the extension-flap shear
coupling, k13 the extension-lag shear coupling, k14 the
extension-twist coupling, k2s the lag shear-flap bending
coupling, k36 the flap shear-lag bending coupling, k45
the flap bending-twist coupling, and finally k4e the lag
bending-twist coupling. All the stiffneases are shown
to be nondimensionalized by appropriate factors of m0
the mass per unit length, _ the reference rotational
velocity, and R the blade radius.

The rotating natural frequencies for each case as
predicted by two analyses, UMARC and CORBA, are
shown in Tables 2-4. All references to "UMARC" are

understood to mean the version which has a 19 degree-
of-freedom shear deformable beam element, unless oth-
erwise indicated. The difference in predictions between
CORBA and UMARC is shown to be less than one per-
cent for all modes except the second flap mode of the
anti-symmetric case where the difference is 1.35 per-
cent. Comparisons studies, not shown here, also showed
good agreement between the two analyses for highly
twisted blades, up to 90 °. These correlations indicate
that the present analysis has accurately captured the
effects of rotation, twist, elastic coupling, and shear de-
formation.

Two more case studies, designated Series _, were
examined to determine the influence of higher amounts
of elastic coupling on the frequency predictions of
UMARC and CORBA. The cross section geometry of
these cases was a simple single cell box beam, without
any nonstructural mass or secondary structure, and in

one case the layup was arranged in an anti-symmetric
configuration while the other was arranged in a sym-
metric configuration. The symmetric case had a [1516
layup of graphite epoxy material on the top and bot-
tom walls while the sides had a layup of [15/-15]s. The
anti-symmetric layup was [15]s on top and [-1516 on the
bottom wall, and one side was [1516 while the other side
was [-1516. The box had an outside width of .953 inches
and outside depth of .537 inches, and the specimens
were 33.25 inches long. These cases were examined be-
cause a set of experimental results, presented by Chan-
dra and Chopra (1989), was available for correlation
with the analytical predictions.

The cross section mass and stiffness properties
of these specimens were calculated using a two-
dimensional analysis described in detail by Smith and
Chopra (1990). This analysis accounts for shear defor-
mation and the out-of-plane warping associated with
torsion, but does not consider any other warping ef-
fects. The mass and stiffness properties developed by
this analysis were used as input to both UMARC and
CORBA.

The analytical and experimental results are listed
in Table 5 for the anti-symmetric case and in Table 6
for the symmetric case. The importance of including
the shear coupling effects for the anti-symmetric case
is demonstrated by the overly stiff predictions shown
for UMARC" (UMARC version without shear deforma-
tion). The frequency predictions of CORBA are shown
to agree very well with those of UMARC in both cases.
There is a small discrepancy in the predictions of the
second lag modes, but this amounts to less than 4 per-
cent. Of greater importance is the discrepancy of both
beam analyses with respect to the experimental results.
The correlation of CORBA with the experimental re-
suits is shown to be poor, particularly in the lag mode,
for both the symmetric and anti-symmetric cases. The
error is mostly likely caused by neglecting some impor-
tant warping terms in the cross section analysis.

Warpinl_ Influences on the Anti-Symmetric Box Beam

The cross section analysis employed in the verifi-
cation studies of the last section considered only the
out-of-plane torsion-related warping. Account of this
warping effect gave a much more flexible and accurate
torsional stiffness value. Analogously, the shear stiff-
ness of the beam is also decreased by warping of the
cross section. In this case, the majority of the effect is
due to deformation of the cross section associated with

shear forces both inplane (anticlastic deformation) and



Table 6: Rotating frequencies of the Series _ symmetric
case at _2 - 1002 RPM.

CORBA UMARC Exp. CORBAt Pred.

(Hz) (Hz) (Hz) Di4ff.81%) Mode36.92 36.87 35.20 ...... 1st flap
62.79 62.45 53.80 16.7 1st lag
205.0 203.0 188.0 9.04 2nd flap
392.2 378.9 2nd lag
729.9 729.2 1st tor.

t Correlation with experimental results.

out-of-plane. A simplified approach for including shear-
related warping effects in a beam is to reduce the effec-
tive shear stiffness by a factor K which represents the
ratio of average shear stress over the cross section to the
shear stress at the centroid. This factor accounts for the
near-parabolic distribution of shear stress through the
cross section in the direction of the applied shear force,
and is generally referred to as Timoshenko's shear cor-
rection factor. Since the amount of warping due to a
shear load depends on the shape and material of the
cross section, so does the value of K. The value of K
was determined, using the formulas derived by Cowper
(1966), as approximately 0.85 for the anti-symmetric
box beam.

The influence of the shear stiffness effect on bending
behavior was examined for the Series _ anti-symmetric
box beam, but with variations of the laminate ply an-
gles. The basic ply structure of the anti-symmetric box
beam is [0]6 on top and one side, and [-0]e on bot-
tom and the other side, where 0 = 15o for the baseline
anti-symmetric configuration. The ply angle was var-
ied from 0 = 0° to 0 = 45 o for this study. The beam
was considered non-rotating so as to isolate the elastic
effects from the rotational effects.

For this study, the results of CORBA were com-
pared with those of an anisotropic 3-D p-version finite
element analysis developed by Hinnant (1992). The
3-D analysis used four brick elements to model the
box beam. Convergence was achieved with ninth or-
der polynomials for displacements along the length of
the beam, cubic polynomials along the sides of the cross
section walls, and linear polynomials through the thick-
ness of each laminate. The material properties of each
brick finite element were determined by averaging the
material properties for each ply in the laminate over the
laminate thickness. For cases in which the box beam
was twisted, each brick element was twisted in a con-
tinuous manner such that the finite element model did
not differ from the physical model by more than one
hundredth of an inch at any point.

Results of the ply angle sweep for the anti-
symmetric box beam, both with and without the shear
correction factor applied, are illustrated in Fig. 1,
shown as a function of error in the CORBA analysis
with respect to the 3-D analysis. The error in the first
bending modes is shown to increase rapidly with ply
angle, maximizing at about 8 = 25 °, and then decrease
with ply angle. This is consistent with what might be
expected based on the Poisson effects because the Pois-
son's ratio of the box beam laminates follows a similar

trend with ply angle. The cross section warping is de-

pendent on the Poisson's ratio, so errors associated with
not including all the effects of warping are expected.
The worst error is quite significant, about 16 percent
in the first lag mode and about 6 percent in the first
flap mode. The error in the second and third bending
modes is shown to be higher, with error maximizing at
about 0 = 20 °. The shear correction factor is shown
to greatly reduce-:these errors, giving a very accurate
prediction in the flap modes.

Shear Correction Factor [
B Without I-- With

16 r. _

12

Error,
% 8

st To

0 I I I

0 15 30 45

(a)Fundamentalmodes.

25

2O

Error,15

% 10

5

0
0 15

Co) Second bending modes.

30 45

20

Error, 15

% I0
5

0

0 15 30 45

Ply Angle, deg.

(c) Third bending modes.

Figure 1: Error in frequency predictions as a function
of ply angle for the anti-symmetric box beam.

In a second approach taken to account for all warp-
ing influences, the lag bending stiffness was determined
through iteration (using the CORBA analysis) as that
required to drive the first lag bending frequency to zero
error. The error of the second and third lag bending
modes associated with the new lag stiffness are illns-
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trated in Fig. 2. As shown, the error in the higher lag
bending mo_es is reduced, with less than five percent
error at 0 = 306 where previously the error was in the
10 to 25 percent range. This is an important result
because it shows that even in cases where the warping
effects axe significant, the frequencies of higher modes
may be accurately predicted if the same is true of the
fundamental modes. The result is not obvious because
the importance of direct shear effects increases at higher
modes (beam is effectively shorter).

15

10

Error,
%

0
0

_2ndLag _ _

, ,, i I I

15 30 45

Ply Angle, deg.

Figure 2: Error in lag mode bending frequency predic-
tions after matching fundamental mode frequencies.

The rotating box beam with [1516 layup was then
considered with the appropriate stiffness terms as de-
veloped in the nonrotating study. The results are shown
in Table 7 to be greatly improved over those of Table 5,
indicating that effects associated with rotation have a
negligible influence on the accuracy of the frequency
predictions.

Table 7: Rotating frequencies of an anti-symmetric
layup box beam at f_ = 1002 RPM with refined stiffness
properties.

CORBA Experiment COKBA Pred.

(Hz) (Hz) Error (%) Mode
34.78 33.601 3.50 1st flap
47.04 46.60 0.93 1st lag
190.4 184.0 3.46 2nd flap
293.4 2nd lag
493.6 1st toE.

Warpin_ Influences on the Symmetric Box Beam

The symmetric box beam case was also examined
as a function of ply angle in the nonrotating configu-
ration. For the symmetric box beam case, the shear
is uncoupled from bending and should have little effect
on the bending frequencies. The plots of Fig. 3 show
that there is a dependency of the error (calculated with
respect to the 3-D analysis results) on the ply orienta-
tion, just as there was for the anti-symmetric case. The
error in the prediction of the fundamental torsion mode
(which is coupled to the flap bending mode) is shown to
increase with ply angle to a maximum at 0 = 45 ° , while
the error in the lag mode (which is decoupled from tor-
sion and flap) maximizes at about 25 ° . The error in

12

10

8

Em_, 6
%

4

2

0
....... 0 15 30 45

(a) Fundamental modes.

2o13  _g__

Faror, 10 j" 3rdFlap

%

0
0 15 30 45

Ply Angle,deg.

Co)Second and thirdbendingmodes.

Figure 3: Error in frequency predictions as a function
of ply angle for the symmetric box beam.

the higher lag and flap modes does not follow the same
path as the error in the fundamental lag mode with
respect to the ply angle variations. The higher modes
are shown to improve while the fundamental lag mode
worsens for the ply angles above 30 ° .

A new torsional stiffness was determined which gave
a zero error in the fundamental torsion mode. The pro-
cedure used was the same iterative procedure used pre-
viously to obtain the improved lag stiffnesses for the
anti-symmetric case. It was found that the improve-
ment to the torsional stiffness drove not only the fun-
damental torsion mode error to zero, but also drove
the flap bending mode error to near zero because of
the coupling between the two modes. The reverse was
found not to be true, driving the flap bending mode
to zero error did not correct the torsion mode error.
Since both the fundamental torsion and flap bending
modes could be corrected by adjusting a single stiff-
ness value, the errors associated with the flap bending
and torsion modes were likely from the same source,
which was probably an alteration of the torsion-related
warping function at the high ply angles.

An improved lag stiffness was also calculated us-
ing the iterative procedure. The error of the lag bend-
ing mode is attributed to out-of-plane warping associ-
ated with bending since this mode is decoupled from
all other modes.

Application of the refined torsion and lag bending
stiffnesses improved predictions of the higher bending
modes as shown in Fig. 4. It is interesting that the
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Figure 4: Error in high mode bending frequency pre-
dictions after matching fundamental mode frequencies.

error in the higher modes, after the corrections were
applied, are lower at high ply angles where the beam is
highly coupled and are worse at zero degrees ply angle
where the beam is uncoupled.

Effects of Large Pretwist on Nonclassical Effects

Another important influence on composite blades is
that of the built-in pretwist. The influence of pretwist
could create problems for the approach of the present
formulation because it is difficult to account for a global
effect like pretwist in the local cross section analy-
sis. The study of Shield (1982) illustrated the signif-
icant influence of pretwist on cross section deforma-
tions of bars, and the study of Kosmatka (1992) showed
that pretwist has a significant influence on the cross
section deformations and extension-torsion behavior of
solid and thin-wall airfoil sections. The static behavior
of pretwisted elastically-coupled composite beams was
studied by Iesan (1976), Kosmatka and Dong (1991),
and Kosmatka (1991). These studies indicate that the
elastic-coupling and nonclassical influences of shear-
deformation and warping can be influenced by the
pretwist of the beam. There are no known reports to
date, however, indicating the magnitude of the effect
that the pretwist may have on the dynamic behavior of
elastically-coupled beams typical of rotor blades.

The influence of the pretwist on the nonclassical
effects of shear deformation and warping were examined
for the nonrotating symmetric and anti-symmetric box
beam cases of Series _ with 0 = 15°. The error of the
CORBA predictions as compared with the 3-D results
are shown in Fig. 5 for pretwist angles up to 90 ° in the
anti-symmetric case. The change in error is small for
the fundamental modes, with error change less than five
percent from the untwisted case, even in the extreme
case of 90 ° of pretwist. The error in the higher lag
modes is shown to be only slightly larger, with a change
in the error from 9 to about 16 percent in the third lag
mode. The change in error of both the fundamental and
higher modes, as a function of pretwist, was negligible
for the symmetric case.

Convergence Study

A convergence study was performed to determine if
use of higher order elements is beneficial when beams
are elastically coupled. A standard h-element is defined
for purposes of the present discussion as one with cubic

[- 1StTot. _"

Error,% 3_
0

0 3O 6O 9O

(a) Fundamental modes.

3_

12

6

0 30 60 90

PretwistinBox Beam, deg.

Co)Second and thirdbendingmodes.

Figure 5: Error in frequency predictions as a function
of the anti-symmetric beam pretwist.

bending shape functions and quadratic axial and tor-
sion displacement approximations. The equivalent p-
version element of the present formulation has pu -- 1
and pc = 1. Since this element is common in rotor anal-
ysis, the convergence study will consider it a baseline for
comparison. Elements with higher order than the stan-
dard are referenced by their addition to the displace-
ment approximations. For example, "Std.%lw+lt _
refers to a beam element with one order higher approx-
imation in flap bending and torsion than the standard
element.

A convergence study of a bending-twist-coupled un-
twisted composite box beam showed slow convergence
of the third predominantly flap mode. The cause of this
was probably due to the coupling between the bending
and torsion modes. Various shape function approxima-
tion schemes were employed to determine an optimum
for convergence of this particular mode. The results
are illustrated in the plot of Fig. 6 which shows that
the "Std.+lw+lt _ approximation scheme had the best
convergence. Use of that approximation scheme de-
creased the total number of degrees of freedom from
32 to 22, assuming a 1 percent error criteria. This
amounts to about a one-third reduction in global de-
grees of freedom which could relate to significant im-
provements in run times associated with analyses of
elastically-coupled blades.

The composite box beam considered in the above
study was uniform and untwisted. A second study was
conducted on the same beam with 400 of pretwist. In
this case, the cross section properties change as a func-
tion of z, and, as a result, the integrations were not
exact. Again, various shape function approximation
schemes were employed to determine an optimum for
convergence of the third flapwise bending mode. The
results are illustrated in the plot of Fig. 7 which shows
that there is no optimum. The convergence rates are
also much shallower than those shown for the untwisted
case in Fig. 6. This is because in addition to the elastic
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Figure 7: Convergence of the 40 ° twisted symmetric-
case box beam.

couplingbetween flapand torsionmodes, the pretwist
introducescoupling between the bending modes. The
only higher-orderelement which performed wellhad ad-

ditonalorder increasesin both bending modes as well
as torsion.However, for thistwistedcase,the higher
order elements did nothing to improve efficiency,and
in some cases even degraded it.

CONCLUSIONS

A dynamic analysis has been formulated for rotating
pretwisted composite blades which exhibit anisotropic
behavior. The present formulation incorporated the ef-
fects of shear deformation implicitly through elimina-
tion of the shear variables in the material compliance
matrix. Results showed that this approach was able
to capture the most significant effect of shear defor-
mation, namely the reduction in effective bending stiff-
ness that occurs when a substantial amount of bending-
shear coupling is present in a beam. The difference
between implicit and explicit use of shear degrees of
freedom was shown to be less than 2 percent up to
the second bending modes of some representative rotor
blades, and less than 4 percent up to the second bend-
ing modes of some highly coupled box beam specimens.

The results of this study also showed that one-
dimensional global dynamic analysis based on classical
beam kinematics can accurately predict the bending
and torsion frequencies of modes important to an aero-
elastic analysis. However, the section properties used
in the global analysis must account for the important
nonclassical effects associated with shear deformation,
warping, and elastic couplings. These nonclassical ef-
fects were shown to have significant influence on the
frequencies of the fundamental modes of highly coupled
beam structures. Errors on the order of fifteen percent
were reduced to less than five percent through account
of the nonclassical effects. The influence of twist on the
predictive capabilities of the analysis was shown to be
small.

The present analysis (CORBA) was implemented
using a p-version beam finite element. Both the ad-
vantages and disadvantages of this approach were dis-
cussed. The p-version element proved to be convenient
for assuring a converged solution, and allowed the de-
sired flexibility in tailoring the displacement approxi-
mations to the dynamic characteristics of a given beam
configuration. Some degree of efficiency improvement
was demonstrated for the uniform untwisted case, but
efficiency does not appear to be an issue for more re-
alistic rotor blade structures. Much of the efficiency of
using higher order elements was shown to be lost for a
highly twisted blade.
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APPENDIX A
STRAIN AND KINETIC ENERGY
FORMULATION

Astheformulationpresentedhereis nonlinear and
explicit, the number of terms in the energy expressions
can quickly grow to an unmanageable size. Further,
many of the terms may be negligible compared to other
important terms. To reduce the number of terms to
only those of significance, an ordering scheme is em-
ployed where terms of O(e n+2) and higher are elimi-
nated in the presence of terms of O(d_). All displace-
ment variables defined in this formulation are assigned
an order of c with two exceptions. The axial displace-
ment us is of order _2 and the twist deformation _ is
of order one. The latter exception results from making
the analysis accurate for rotor blades with very large
elastic couplings associated with twist deformation.

Geometry and Coordinates

The present formulation requires six coordinate sys-
tems. Shaft, giraballed, and hub-fized coordinate sys-
tems are defined as illustrated in Fig. 8. For purposes of

A

Figure 8: Geometry of the shaft, gimbal and hub.

the present formulation, the shaft reference frame is an
inertial system. A blade reference frame (ez ,iy,iz) is de-
fined with its z-axis directed along the elastic axis of the
undeformed blade as shown in Fig. 9. The elastic part
of the blade is offset from the center of rotation a dis-

tance h_i_. A cross-section reference frame (_=,in,E¢)
is defined with origin at some position (h= + z)dx along
the elastic axis of the blade, and with origin on that
axis acting as the reference point for the cross section.
The unit vector i n is directed along the chord direc-
tion of the blade cross section while i¢ is defined by
the cross product of 6_ and i n. Thus, the cross-section
system is an orthonormal vector set which rotates with
the built-in pretwist of the undeformed blade. A de-

formed reference frame (E=,En,g_) is identical to the
cross-section set before deformation, but translates and
rotates with the bending and twist of the rigid cross
section plane to a new position after deformation.

The unit vector triads of each coordinate system are

related by the following equations:

]a = [T_s] is (10)
Ra Rs

{'o}]1t = [TltG] ](; (11)

ks ka

6 = [T._] ]. (121
6, KH

i= _=

-- [TDc] e. (14)

and the transformations matrices are themselves given
by:

[Tas] = [

[
[Trial = [

[Tsn] = [

[Ten] = [

cos/3ac 0 -sin_ac ]
0 I 0 Jsin_c;c 0 cos_ac

1 0 0 ]

0 cos/3as sin �3as J (15)0 - sin/3as cos/3as

cos_ sinto 0 ]

-sinto costO 0 J (16)0 0 1

cos/3v 0 -sin/3v ]

o 1 o ] (17)sin/3p 0 cos/3/,

I 0 0 ]

0 cos/3 sin/3 ] (18)0 -sin/3 cos/3

The transformation between the deformed and cross-

section systems [TDc] is derived later in this appendix.

Strain Ener/_y Derivation

Consider the position of a point on the cross section
of a rotor blade before deformation with position vector
given by

_'0= (h= + z)i= + rti n + (i_ (19)

After deformation, the position vector is given by

= Ro + R_ + -_w (2O)

where _ representsdeformed positionofthe crosssec-

tionreferencepoint,]_E representsdeformation asso-
ciatedwith the rigidrotationofthe crosssection,and

/_w representsdeformation associatedwith warping of
the cr_s section.The positionvectorsare definedas
follows:

= (h=+z+Uo)i=+Voin+Wo_¢ (21)

_ = 0g. + rig. + ¢g_ (22)

_ = w.L + w.g. + w_g_ (23)
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Figure 9: Geometry of the elastic blade.

where Wu, Wn, and We are warping displacements de-
fined as

W, = u'¢_A+w'_.¢.Qc +On¢_M , +

v'c.CuQ, + 0¢¢..Mc + _b'_,T (24)

W n = u'¢nA + w'c.¢,Q¢ + 0nCnM ' +

v:,¢nQ , + 0CCnM c -6 ¢b'¢nT (25)

v'c.¢CQ . + 0C_bCM, + _b'¢¢T (26)

where subscript s denotes shear strains due to shear
deformation and 0 is rotation due to bending. The
warping terms represent nonclassical contributions to
the displacements as a result of cross section deforma-
tion. The notation for the warping _O gives the dis-
placement in the direction i associated with a load j,
and the magnitude of the displacement in the i direc-
tion is shown to be proportional to the displacement
associated with the load direction. The displacements
associated with warping are in general small for beam
structures, with only a few exceptions. The most well-
known exception is the out-of-plane warping associated
with torsion of noncircular beams (BuT in the present
formulation). With a completely general approach to
anisotropic beam theory, any of the 18 warping terms
shown above could be significant for a particular con-
figuration. Thus, for the general approach, all of the
warping terms would be maintained within the order-
ing scheme, even though for most practical cases all but
a few terms could be eliminated.

However, the warping displacements have little use
in a one-dimensional analysis because the primary ob-
jective is accurate assessment of global behavior. The
important contribution of warping has been shown in
past studies to be a reduction in the effective beam stiff-
nesses. As such, the warping unnecessarily complicates
development of the one-dimensional analysis and will
be eliminated except for some key terms which have
been shown to be important, even for isotropic beams.
The other effects of warping can be captured in a de-
tailed cross section (local) analysis which is uncoupled
from the beam (global) analysis.

The warping terms which are retained are the out-
of-plane torsion-related warping _Z, and the two out-
of-plane shear-related warping terms CuQ_ and CuQ_.
If the Timoshenko-type shear deformation model is ap-

plied _the cross section is assumed to remain plane),
then tp.Q_ = _ and _b.o. = r/. The deformed position

vector is then rewritten with /_ = [_b'¢uT + re,' _/+

= ({hi -6 x -6 1/0,1_0, wo} -6 {(¢_'_uT -6

' in (27)

where TDc is the transformation matrix between the
deformed and cross-section coordinate systems, and
will be derived in the next paragraph.

The sequence of rotations for transformation from
the undeformed cross-section axis system to the de-
formed axis system is {O(, -0 n #} where 0( is the Eu-
ler bending rotation in the had-lag plane (given no
pretwist), On is the Euler bending rotation in the flap-
wise plane (given no pretwist), and _b is the elastic twist
which maybe a large angle. The transformation matrix
is then defined as

1 0 0
[TDc] = 0 cos_ sine

0 -sin_ cos_
1[

On 0 1

(28)

where the small angle assumption has been employed
forthebending rotations.The rotationsmay be written
in terms ofthe cross-sectionkinematic variablesas

OC = (v¢,=- _,=wc)6n (29)

-0 n = (wc,z -6 _,,v=)_¢ (30)

which, when substituted into Eqn. 28, gives the trans-
formation matrix as

[TDc] =

[ 1 v:- w,fl' to: +v_ff]
-(v_ - wd_') cos_b tic sin ¢ sine /

-(_ + v,_') sin ¢ + cos¢

i-(w'+v_')cos_ &cos¢ cos_ /
[.+(v_ - w,ff) sin ¢ - sin J

(31)
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where,
_o = -(¢, - w,¢)(w', + _o¢) (32)

This transformation agrees with that of Kosmktka
(1986) if ¢ is assumed to be a small angle.

The strains are developed in terms of the displace-
ments by substituting the derivatives of the position
vectors into the strain component definitions as given
in Wempner (1981). The position vectors have been
defined in terms of the cross-section coordinates, and
the derivatives were calculated as follows:

_= = {1,0,0} (33)

F_ = {0,1,0} (34)

_,_ = {0,0,1} (35)

_, = {G._,G._,G_3} (36)

/_,. - {G.1,G.2,G.s} (37)

_,_ = {G_I,O¢_,G_3} (36)

where the Gi terms are defined within the ordering
scheme as:

V=l =

1 + u'c -- rp% - (_t¢¢+

¢' [(Cv'_+ ,Tw'o- r/v,_' - eweS')cos
+ (ov' +¢w'o+ O,°a' - r/,.oa')sin4,]
+(¢'¢_T)' (39)

vc' - weft - ¢'[_ cos _b+ r/sin _b] (40)

G=s =

w'. + vcfl' + ¢'[r/cos ¢ - (sin _] (41)

G_I =

v' - (v_ - weft) cos _b- (w_ + v,,ff) sin ¢ +C_

_b'¢.r,, (42)

Gn_ =

cos¢+ (v_w__ - vod-ff+
w,w'cff - v:w_¢) sin ¢ (43)

G_3 "-

sin _b (44)

G¢1 =

w' - (w'_ + v,_') cos_b+ (v', - w,_') sin ¢ +
C$

G¢2

- sin¢ + (._w_,2 _ _,_, +
I I I,,,_,,,_' - v_w¢)cos4,

G¢3 =

cos

and the curvatures are given by

(45)

(46)

(47)

,_.= (v:'- woa" - 2_:/_'- v.a'2)cos_+
(w" + vcff' + 2v'cff - web a) sin¢ (48)

9t3 t f4t tD /¥2_Cos_--,q = (w"+ v,#" + .. ,,. - ,,..
(v:' - w, fl" - 2w:ff - v,ff _) sin ¢ (49)

and _n is the curvature in the fiapwise plane and _(
is curvature in the lead-lag plane. The strain compo-
nent definitions simplify after substitution of the unde-
formed position vectors to

... = (R,_./_,.- I)12 (50)

,,,, = (R,.._.,) (51)

_.¢ = (_i,.. R,¢) (52)
%_ _ e(( _%_ _ 0 (53)

where e=e and e=¢ are the engineering form of the shear
strains. The three nonzero strains are calculated by
carrying out the dot products. In terms of the dis-
placements defined in the cross-section system, these
are shown after application of the ordering scheme.

1 , 1 ,
_.= = '4 + _(_o- w.ff) _+ _(", + '_.Z')_-

r/_,_ -- C_( + l(r/2 + ¢2)_b'2 + (¢'¢.T)'(54)

-- lff{'., c. _" (CUT:, " ¢)¢' (55)

_.¢ = w'. + (¢.r,¢ + r/)¢' (56)

These strains are defined in terms of the blade coordi-
nate system through use of the transformation ITch]
as

u' Iv,2 1 ,_ 1

-v"[r/cos(_+ ¢) - _ sin(_ + _b)]

-w"[r/sin(_ + _b) + _ sin(fl + ¢)]

+(¢'¢ur)' (57)

e=,_ = v's cos(fl + ¢_) + w', sin(/_ + ¢) +

(¢.T,, - ¢)¢' (56)

_< = _'0cos(Z+ _) - ¢ sin(_ + ¢) +
(¢_TX+ r/)¢' (59)

At this point a variable substitution is made which
eliminates the kinematic contribution of forshortening
from the axial displacement. It has been shown by
Kaza and Kvaternik (1977) that this substitution pro-
vides the convenience of developing centrifugal stiffen-
ing terms associated with forshortening in the kinetic
energy formulation rather than the strain energy for-
mulation. The substitution is

' u' 2v" lwr_ (60)

where u' represents the elastic axial strain without
kinematic contributions from transverse bending dis-
placements. The strain components then become in
final form:

1
+,. = -'++ _ (r/_+ _)¢'_ + (¢'¢.T)'

-v"[r/cos(_ + _) - ¢ sin(_+ _b)]

-w"[r/sin(/_ + ¢) + _ sin(_ + _)] (61)

e_ = v',cos(_ + _b)+ w'° sin(/_+ _b)+

(_uT,t/ -- _)¢t (62)

_< = _'ocos(_+ ¢)- ¢ sin(_+ _)+

(¢.r,¢ + r/)_b' (63)
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The elastic stress-strain relationships employed in this
formulation are given as

0"., Q16 Q66 _z_

where the _j represent the material stiffness at a ]oc-
tion in the cross section. The material stiffnesses are an

average value based on tbe individual ply material and
orientation, and also depend on the orientation of the
laminate with respect to the crees section axes. The
variation of the elastic strain energy can then be writ-
ten as

_= {#==&f=+#f,&f,+#z¢&r(}&Td_dz (65)

The stress-strain relations are substituted into the
strain energy variational, followed by a second substitu-
tion of the strain-displacement relations (Eqns. 61-63)
for the strains. After integrating over the area, the
strain energy variation becomes

_J "- _ikij_j dz + _iDi dz (66)

where (i, j = 1, 9), and

_,={ _" _: _: _'_"_'_"} (67)

The first integral of Eqn. 66 represents the linear part
of the strain energy and the second term represents the
nonlinear contribution to the strain energy.

Kinetic Ener_y Derivation

Now, the kinetic energy is derived. The position of
a point on the deformed blade as given by Eqn. 27 may
be written using the blade reference displacements and
neglecting the warping displacements as

= _, (68)
({h_+z+u,v,w}+{o,_,(}[TDs]) _,

where [TDs] is the transformation Between the de-
formed and blade coordinate systems which is given
by

[TDB] = [TDc][Tcs] (69)

The velocity of a point on the deformed blade is written
as

0h
= %- + _ x _ (70)

where

_z

= {O,O, Qo}[THG]T[TBH]TI _.}_,_. (71)

and _0 isthe rotationrateatwhich the hub spinsabout
the gimballed zG axis. If there is no precone then f_= =

f/y ----0. After application of the ordering scheme, the
velocity is given by

$' -- {Vz, Vu,V, ) _, (72)

V_ "-

+ wfl_ - vfl, - (fl, + _')_cee/_ +

([l_ - w')(cee/_2 + _ sin_ + f_,¢ sin _ +

(cee _'_ +. sin _'_ -. co, _'_ -
( sin fl2w'_ + _sin fl_w' + ( sin fl_i/ (73)

_=
_) - _fl= + (hr + z + u)fl. - fl._v'cee_ -

_.¢cee_ - (_cos_ - f_,¢w'co,_ -

_#r_sin/_2 - _/_ sin _ - f/zr/w' sin _ +

G_(_' sin/_ (74)

V,=
t_ + _fl= - (h= + z + u)fl_ + fl=r/co,/_ +

fl_,_v' co` 9_ + _ ceeg_ + fl_4 cee/_ +

f/_ _/w' sin/_2 - ¢_ sin/_ - f/=¢sin/_ -

ft_(v'sin _ (75)

where _ = /_+ _. After taking the variationof the

velocity,the followingsubstitutions,which are based
on Eqn. 60, are made into V and 51).

I"a = ,i. - (v',_'+ _',_') dz (76)

I"_ - _. - h,'_' - w'_') dz (77)

The variation of the blade kinetic energy is given by

5T = p?. 57 d_Td¢ dz (78)

where p is the mass density of the blade. After sub-
stituting the velocity as defined in Eqn. 72 into the
kinetic energy expression, calculating the velocity vari-
ation, and carrying out the dot product, the variation
of the kinetic energy may be written as

oRm{[T.], bii+ [T_], + T. _ + Tr} dz (79)

where (i = 1,6) and the vector of displacement varia-
tions for the kinetic energy formulation is given by,

_,={ _,, & &' _ _ _ } (80)

The quantities[T,]iand [T._]jrepresentgroups ofterms
which may be functionsof both u and d. The terms
T_ and Tr representadditionalterms in the kinetic
energy which resultfrom the variablesubstitutionsde-
finedin Eqns. 76 and 77. T_ representsthe nonlinear
anti-symmetriccontributionofCoriolisforceand isde-
finedas

T_= 2 (,,',)' + _',i/) _ (81)
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ThetermTF gives the contribution from the integral
part of the variation substitution for _ue,

I"rF -- -(_ + 2,_) (¢_' + w'_') _ (82)

After integrating by parts, TF may be written in a more
convenient manner as

TF = --(FA + Fco,)(v'&' + w'6w') (83)

where

j_r R
FA = mx d_ (84)

Fco, = 2my) d_ (85)

The terms associated with FA reflect the centrifugal
stiffening effects on the flap and lag equations while the
terms associated with Fco_ reflect the nonlinear Coriolis
damping effects in those equations. The terms associ-
ated with FA and Fco_ are added to T_ and Tw_ which
allows the linear contribution to the kinetic energy vari-
ation to he written as

R

6Ttin = _ {_,moQ j + _,cljf_i + _ikij61) dz (86)

A more useful form of the above expression is obtained
by integrating the variation in kinetic energy by parts
over time. This can be done because in applying Hamil-
ton's principle the variation in kinetic energy will be in-
tegrated in time. By temporarily switching the order of
integration, the integration by parts can be performed.

= _imij6jdt dz =
z JO Jtz

_l(_irnij_j[i - _f" _uifflij_j dt) d_ =

--.It, ,so &imofiJ dz dt (87)

After a similar operation on the damping term of
Eqn. 86, the linear variation of kinetic energy becomes

[ ",_T.. = _{mou i + c_u_ + Icii_S} dz (88)

APPENDIX B
IMPLEMENTATION

Introduction

The present formulation is implemented as a beam fi-
nite element. Many past analyses for rotating blades
have used this approach, but the order of polynomi-
als used to approximate the displacements has varied.
The analysis of Kosmatka (1986) uses a quadratic tor-
sion and axial approximation along with cubic Hermi-
tian polynomials for bending. This set of assumptions
provides the same level of accuracy in the torsion and
axial deformations as in the bending deformations. The
analyses of Hong and Chopra (1985a, 1985b) and Smith
and Chopra (1991) use similar displacement polynomi-
als, but with a cubic axial approximation, developed as
a mean for improving the axial mode predictions.

A higher order element capability was developed for
the dynamic analysis of beams in the GRASP code
Hodges et. al., 1990). In this code the user could
ndependently increase the order of polynomial ap-

proximation of each displacement to match the physi-
cal characteristics of the beam. This is the so-called
p-version finite element approach, and seems ideally
suited for application to analysis of elastically-coupled
beams because of the dramatic influence elastic cou-
plings have on beam flexibility in some displacement
modes. The study of Hinnant (1989) demonstrated
that, given proper modeling of the beam geometry,
there is also substantial savings to be gained by use of
p-version elements in terms of total number of degrees
of freedom required to obtain an accurate solution.

Finite Element Implementation

The linear parts of the strain and kinetic energies
as defined in Eqns. 66 and 88 are used to develop a p-
version beam finite element. The continuous displace-
ments which appear in these expressions are u, v, w,
and qb, and are functions of both z and time. The con-
tinuous problem is discretized by introducing discrete
degrees of freedom qi which are related to the continu-
ous displacements according to

P.

u- EN?q_ (89)
i----I

P,

v -- EN_q_ (90)
i=1

w = ZN_q_ (91)
i=1

P,

qb -" E N_qi_ (92)
i----1

where Ni are shape functions defined later in
this section. Substitution of these equations into
Eqns. 66 and 88 gives the strain and kinetic energies
in terms of the discrete degrees of freedom. The virtual
energy expression defined in Eqn. 1 may also be written
in discretized form as

15II -- rd,, (sui - 6Ti) dt (93)
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where N is the number of spatial elements used to dis-
cretize the elastic blade. Each element is represented
using the discrete displacements as

_U - 6T = 6q T {M#_) + Cij_j + Kijqj) (94)

where the element mass, damping, and stiffness matri-
ces are defined by

R

M# = _ BikmkIB O dz (95)

R

Cq = fo BikckaBo dr (96)

Kij = (AikkktA 0 dz- Bi_kktBo)dz (97)

where Bit = Bt_ and Aik = A_. B is a matrix of shape
functions and shape function derivatives which satisfies
the relationship

ui = (DT)ij[fij] = (DT)ij[H/kqk] -- Bikqk (98)

where fis is a vector of the continuous degrees of free-
dom u, v, w, and ¢. DT is a matrix of derivative opera-
tors associated with the kinetic energy formulation and
H is a matrix of shape functions whose arrangement
depends on the selection of discrete variables in q, and
satisfies Eqns. 89-92. The definition of A O is similar to
that of Bi/ except that it is associated with the strain
energy formulation• Thus, B may be replaced by A and
subscripts of T may be replaced by V in Eqn. 98.

The discrete degrees of freedom are divided into
two sets, external and internal. There are twelve ex-
ternal degrees of freedom which have physical signif-
icance as the displacements and rotations associated
with the ends of the beam finite element (six on each
end). These deformations are depicted in Fig. 10. The

shape functions for N_ and Nf are identical and have
C°-type continuity. There are two well-known linear

, WI

Figure 10: Beam element showing external discrete de-
grees of freedom.

polynomials used to define this set:

N ° = 1 - _z (99)
1

NO z= - (100)
I

where N_ = N/_ -- N °. The shape functions N_' and

N_ require Cl-type continuity. These shape functions
are given by:

z 3 z 2

Na1 - 2_--3_-+1 (101)

Z 3 Z 2

N_ = t-T- 2-T+z (102)
Z 3 Z 2

N_ = -2_- + 3]-_ (103)

Z3 :_2

N41- i 2 l (104)

where N? = N_ - N .].
The Internal de_'ees of freedom have no physical

significance, but are simply coefficients of the higher
order shape functions. The internal degrees of freedom
serve to increase the accuracy of the transformation
from the discrete problem having a finite number of de-
grees of freedom to the continuous problem having an
infinite number of degrees of freedom. In the present
formulation, the number of internal degrees of freedom
is limited to four for the C°-type displacements, and to
two for the Cl-type displacements. There are, there-
fore, a total of six internal shape functions associated
with each continuous displacement u, v, w, and ¢. The
additional C°-type shape functions for u and _bare

= (lO5)

z2 = (106)° = v6(-2 + - 7)
.4 _:a z 2 _c

30_ -3 7: (108)

These shape functions are derived by Hinnant (1989)
based on satisfaction of two requirements: first, the
higher order shape functions must be zero at the ele-
ment boundaries, and second, they must be orthogonal
with respect to their first derivative. The additional
Cl-type shape functions for v and w are given by

N_ = v/5( /3 + _'_) (109)

z s z 4 z 2

- 2_-_ + (110)= vq(-TC+5 ,-

The derivation of these higher-order polynomials is sire-
ilar to that of the Co-type polynomials, only the func-
tions must also have zero slope at the element bound-
aries, and must be orthogonal in their second deriva-
tive.

The arrangement of shape functions in the matrix
oT shape functions H depends on the arrangement of
discrete degrees of freedom in q. To facilitate the el-
ement assembly process, the discrete unknowns were
grouped with the first twelve external nodes together,
followed by the twelve internal nodes (4u, 2v, 2w, and
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44,).Thearrangement of the vector of discrete degrees
of freedom is given as

Ul

Ul

Wl

U2

_2

u_

q = _
U3

U4

U5

U6

lV3

V4

W3
t#34

4,3
4'4
4,s
4,6

(111)

Before the symbolic integrations of Eqns. 95-97 can
be carried out, the mass, damping, and stiffness cross
section matrices (m, c, k, and k) must be defined as
polynomials in z. The cross section terms are func-
tions of z because of the presence of the twist angle in
many of the terms, which is itself a function of z. In the
present formulation, it is desired to have the capabil-
ity of accounting for changes in cross section properties
beyond that due to twist, such as taper, for example.
A beam element does not allow for such effects directly,
so a quadratic polynomial curve fit was adapted to in-
crease the accuracy of the element for changes in cross
section properties along its length.

The mass, damping, and stiffness matrices as given
by Eqns. 95-97 were symbolically integrated to obtain
24 x 24 element matrices. These matrices were im-
plemented in an analysis to determine the modes and
frequencies of highly-twisted elastically-coupled rotor
blades. As part of this implementation, the displace-
ment approximations could be chosen for each contin-
uous displacement independently. The external dis-
placements represent the minimum number of degrees
of freedom for each element, while the maximum is
given by use of all twelve internal degrees of freedom.
Any choice between 12 and 24 degrees of freedom per
element could be accomodated in the analysis. The
notation adopted for the present formulation is to se-
lect a "p" value which represents the number of in-
ternal degrees of freedom associated with a particular
displacement. For example, an element with Pu -- 1
and p_ - 1 uses the basic cubic hermitian polynomial
approximation in bending (no internal degrees of free-
dom) and quadratic poly omial approximations in the
axial and torsion displacements. This particular exam-
ple happens to represent the most common approxima-
tion used in finite element rotor blade dynamic analysis
because it gives an equivalent level of approximation in
all displacement modes.
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